DEGAS 2 UPDATE:

EIRENE BENCHMARK

D. P. Stotler and C. F. F. Karney Princeton Plasma Physics Laboratory, Princeton University

INTRODUCTION

- Begin UEDGE coupling process by benchmarking against EIRENE.
- Slab "single-null" geometry,
- UEDGE plasma.
- Find:
 - Codes agree to within 5% when using the same physics,
 - Remaining 5% due to differences in numerical details.
 - Run time is about the same for both.
 - Also have MPI version of code running on SGI and T3E.
 - Recombination and toroidal geometry examined next.

COMPARISON OF PHYSICS COMPONENTS

- Use DEGAS 2 standalone codes,
- EIRENE: hardwire "input" values and write out data.
- Checked: (see plots)
 - 1. Distribution of launch points,
 - 2. Energy distribution for reflection off Mo,
 - 3. Angular distribution for reflection,
 - 4. Angular distribution for off-normal incidence,
 - 5. Velocity distribution of desorbed D_2 .

Both Codes Correctly Sample the Prescribed Flux Distribution

RUNS WITH PARTIAL PHYSICS

1. No physics,

- 3 eV D atom, launched with cosine distribution,
- Bounces off mirrors until it exits.
- At 200,000 flights, codes agree to within error bars (10 20%).

2. Add D ionization and charge exchange,

- Agree to within error: 7%,
- Differences in rate interpolations responsible for a few %.

3. Ion plate source from Mo, turn off CX,

- Results differed by 20% near target,
- Due to sensitivity of density to low energy reflections,
- Modify DEGAS 2 data to mimic EIRENE extrapolation:
- Some interpolation differences persist.

4. Add CX,

 \bullet Get statistical agreement to within 5% error bars.

EIRENE "Billiard Physics"

DEGAS 2 Data Have Been Revised to Mimic EIRENE Low Energy Extrapolation

Relative Std. Dev. ~7% Near Target, Increasing Rapidly Away From I

EIRENE PHYSICS

- Add molecular reactions,
- Small numerical differences in low energy reflections persist,
 - \Rightarrow take 5% as goal for good agreement,
 - In regions where σ smaller.
 - Other numerical differences also make doing better difficult.
- Plasma sources:
 - D⁺ source rates agree within 5%,
 - Electron energy source, agreement better than 5%,
 - Momentum and ion energy sources,
 - * Due to CX, error bars larger than in the above,
 - * But, code results agree to within those errors.

DEGAS 2 vs. EIRENE: Ion Source, with EIRENE Physics (Revised

DEGAS 2 vs. EIRENE: D Density, with EIRENE Physics (Revised

DEGAS 2, with EIRENE Physics (Revised)

DEGAS 2 vs. EIRENE: Electron Energy, with EIRENE Physics (Revised

PERFORMANCE BENCHMARK

- Assessed, optimized single processor performance of DEGAS 2.
- Required some significant code revisions,
- Evaluated some simple algorithm changes.
- 1. Eliminate run-time use of string variables, ~ 10 second reduction per 1000 flights.
- 2. Baseline run is above benchmark with "EIRENE physics".
 - All times are on a Sun Ultra Creator 2200, using F77 with "-O4" optimization.

Baseline: 136 seconds per 1000 flights.

- 3. Disable charge exchange rejection,
 - Not used in this version of EIRENE,

Disable CX rejection 119 seconds 1000 flights.

- 4. Reduce number of scores from 14 to 7,
 - Always track variance as well,

Cut number of scores to 7: 95 seconds.

- 5. Compress scoring arrays,
 - Previously were adding 0 + 0 many, many times,

Compressed scores: 49 seconds.

- 6. Removed suppressed absorption,
 - As done in EIRENE,
 - Impact on variance examined below,

Without suppressed ionization: 15 seconds.

- 7. Replace track-length estimators for reactions with collision estimators,
 - Since the collision routines have to be executed anyway ...,
 - Again, will impact variance,

Collision estimator: 10 seconds.

- 8. Follow only one H₂ product, in two atoms,
 - "Russian roulette",
 - Done this way in EIRENE and DEGAS,
 - Will impact variance,
 - Reverted to track-length estimators.

Russian roulette on H_2 : 8 seconds.

- Figure of merit is variance times run time.
- Use region containing 83% of ion source to get estimate of variance,
- Compare variance (relative to Baseline) and run time for the above configurations:

Configuration	Seconds / 1000 Flights	σ Ratio	FOM
Baseline	49	1	49
No Ionization Suppression	15	1.9	54
Collision Estimator	10	4.3	185
H ₂ Russian Roulette	8	2.3	41

- Collision estimator not a winner,
- Suppressed ionization is a wash,
- Russian roulette on molecular product looks good,
- This is default EIRENE configuration!
- Results are problem-dependent.

EIRENE performance: 12 seconds.

\Rightarrow Codes now have about the same run times and give the same answers!

- With dynamic memory allocation,
 DEGAS 2 used 7 MB during these tests,
- EIRENE used 140 MB (geometry dimensions probably could have been set smaller).

UPDATE

- Removing variance computations and eliminating unneeded tallies from EIRENE: EIRENE performance: 3 seconds. Will revisit later.
- Make EIRENE dimensions more appropriate for this geometry, code size reduced from 140 MB to 55 MB.

MPI VERSION OF DEGAS 2

- DEGAS 2 designed for MPP use from beginning,
- Initially implemented PVM,
- But now have switched to MPI since it is in wider use,
- Also motivated by deployment of Princeton University's new SGI Origin 2000 machine (64 processor),
- Compare run times for a 5000 flight box run (different from above) on single processor,
- Compiler optimization on in all cases,

 Digital (Alpha 500)
 56 seconds

 SGI (Origin 2000)
 86

 Sun (Ultra Creator 2200)
 166

 Cray (T3E)
 165

 Cray (C90)
 435

Multiprocessor speeds:

- 1 processor ↔ CPU time (in seconds),
- Others are wall-clock time,
- Parenthetical numbers are speed-up factors relative to single processor,

No. of processors	1	10	32
SGI (Origin 2000)	86	11 (8)	4 (20)
Cray (T3E)	165	25 (6)	10 (16)

- DEGAS 2 fairly well optimized for single processor,
- MPI performance can be improved still,
- By design, MPI and single processor runs give same answer,
- Crays use F90; others, F77.
 - SGI and Sun F90 compiler have bugs,
 - Digital compiler yields very inefficient code.
- Can also explore use of shared memory on SGI Origin 2000.

